Search results

Search for "ridge waveguides" in Full Text gives 2 result(s) in Beilstein Journal of Nanotechnology.

Integrated photonics multi-waveguide devices for optical trapping and Raman spectroscopy: design, fabrication and performance demonstration

  • Gyllion B. Loozen,
  • Arnica Karuna,
  • Mohammad M. R. Fanood,
  • Erik Schreuder and
  • Jacob Caro

Beilstein J. Nanotechnol. 2020, 11, 829–842, doi:10.3762/bjnano.11.68

Graphical Abstract
  • the influence of surfaces. We report the design (including simulations), fabrication and performance demonstration for multi-waveguide devices, using our Si3N4 waveguiding platform as the basis. The designed ridge waveguides, optimized for trapping and Raman spectroscopy, emit narrow beams. Multiple
  • waveguides. Keywords: Brownian motion; integrated optics devices; lab-on-a-chip; optical trapping; nanofabrication; Raman spectroscopy; ridge waveguides; Introduction Photonic lab-on-a-chip (LOC) techniques strongly attract attention for the manipulation and measurement of biological particles such as
PDF
Album
Supp Info
Full Research Paper
Published 27 May 2020

Grating-assisted coupling to nanophotonic circuits in microcrystalline diamond thin films

  • Patrik Rath,
  • Svetlana Khasminskaya,
  • Christoph Nebel,
  • Christoph Wild and
  • Wolfram H.P. Pernice

Beilstein J. Nanotechnol. 2013, 4, 300–305, doi:10.3762/bjnano.4.33

Graphical Abstract
  • above. Here we employ partially etched ridge waveguides as shown in the image in Figure 1b. By using such a waveguide geometry, the optical mode is confined more deeply into the diamond thin film compared to fully etched strip waveguides. This way, scattering effects due to the remaining surface
  • roughness are reduced. Furthermore, we do not remove the Fox15 silica layer on top of the waveguide, which provides a further alleviation of scattering on the diamond top surface. In order to access the optical properties of the ridge waveguides light needs to be transmitted through on-chip devices. While
  • diamond ridge waveguides. Since scattering loss is the dominant loss channel, in future work further improvement of the propagation loss will be possible by using surface polishing procedures to reduce the as-grown surface roughness. Discussion Our implementation of wafer-scale diamond-on-insulator
PDF
Album
Full Research Paper
Published 07 May 2013
Other Beilstein-Institut Open Science Activities